
1613 

Chart II. Synthesis of Bisnorvernolepin and Bisnorvernomenin 
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a Isopropenyl acetate, TsOH, reflux, 9 h. b O3, CH2Cl2-MeOH 
(1:1),-78°. ^NaBH4,-78°. "CH2N2, Et2O. ̂ MsCl, Py, 5°, 15 h. 
Zo-O2NC6H4SeCN, BH4", DMF, room temp, 20 h.^50% H2O2, THF, 
24 h, room temp. "BBr3, CH2Cl2, -78° (30 min)^ -12° (4 h). 'K2-
CO3, MeOH, 3 h, room temp. /TsOH, C6H6, reflux, 2 h. 

accompanied by simultaneous lactonization to the bicyclic 
lactone 14, mp 127-128°. Examination of the 250-MHz 
N M R spectrum of lactone 14 in carbon tetrachloride easily 

,COOMe 

confirmed the assigned structure: <5 5.12 (triplet, 1 H, J^ = 
Jbc = 11 Hz) and 4.94 (triplet of doublets, 1 H, J c d = /de = 
11 Hz, /df = 4.5 Hz). Acetate hydrolysis (77%) followed by 
lactonization (83%) provided a 2.5:1 mixture of bisnorver­
nolepin (15) and bisnorvernomenin (16) which, without 
separation, were converted to their respective tetrahydropy-
ranyl ethers. 

Bis-a-hydroxymethylation of the tetrahydropyranyl 
ethers of 15 and 16 was performed by generation of their 
respective dilactone enolates with lithium diisopropylamide 
in tetrahydrofuran containing 10% hexamethylphosphora-
mide followed by addition of formaldehyde as described 
previously.9 Mesylation of the crude adducts 17 and 18 (R 
= H, CH 2OH) followed by /3-elimination employing 1,5-
diazabicyclo[5.4.0]undec-5-ene in benzene at room temper­
ature gave 17 and 18 (R = = C H 2 ) in 16% overall yield. 
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Hydrolysis (60% aqueous acetic acid, 3 h, 45°) of the te­
trahydropyranyl ethers afforded (71%) crude vernolepin (1) 
and vernomenin (2) as a mixture (ca. 3:1). Vernolepin and 
vernomenin were cleanly separated by preparative layer 
chromatography on 0.25-mm silica gel plates (one elution 
with chloroform-acetone (3:1)). (i)-Vernolepin, mp 210-
211°, was identical with a sample of natural vernolepin,10 

mp 181-182°, by thin layer chromatographic and spectral 
comparisons. (±)-Vernomenin, mp 186-188°, was identical 
according to spectral comparisons with spectra kindly pro­
vided by Professor S. M. Kupchan. 
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Reaction Rate Difference in the Laser Excitation 
of Different Vibrational Modes of CF2ClCF2Cl 

Sir: 

When a molecular vibrational mode of a gaseous system 
is excited by a laser tuned to the frequency of that mode, in-
termolecular collisions and intramolecular mode coupling 
act to transfer the excitation to other vibrational and trans-
lational modes. If the tranfer rates are sufficiently rapid, 
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Figure I. Normalized optical absorption coefficient (cm-1 Torr-1) vs. 
wavenumber over two bands of CF2CICF2CI. Absorption measured at 
200 Torr with instrumental slit resolution of 1 cm-1. 

the selectivity of the excitation is destroyed and the result is 
pure thermal heating by the laser. 

This note reports the first observation, to our knowledge, 
of a significant difference in reaction rates induced by 
steady-state laser excitation of two different vibrational 
modes of the same molecule (CF2CICF2CI). Moreover, this 
occurs under conditions in which the excitation rate of ei­
ther mode (~104 photons absorbed per second per mole­
cule) is very much less than the collision frequency (~109 

per second per molecule). The results suggest that collisions 
play an important role in the activation process leading to 
reaction, and at a rate which successfully competes with 
thermalization. 

CF2CICF2CI has two strong absorption bands of compa­
rable strength within the frequency range of a CO2 laser. 
Figure 1 shows the absorption coefficient of the compound 
over these bands and the laser frequencies chosen for irra­
diation. The absorption is recorded at low light intensity 
and is expected to decrease at laser intensities (transparen­
cy effect). Laser powers from 2.5 to 4.6 W (CW) were used 
with a beam diameter of 1 mm, and in all experiments the 
beam was totally absorbed along the 50-mm path length of 
the sample cell. Reaction rates were obtained by monitoring 
the growth of the 1344-cm-1 absorption band of one of the 
reaction products (C2F4) during irradiation. 

Both laser frequencies appear to give the same reaction 
but at different rates. With a starting gas pressure of 300 
Torr of CF2CICF2CI, the reaction rate for 921-cm -1 radia­
tion is 160 ± 35 times larger than for 1052-Cm-1 radiation 
at identical power levels. Within experimental error, this 
ratio of rates seems independent of laser power over the 
range 2.5-4.6 W. The rates increase approximately as the 
eighth power of laser intensity. It should be noted that the 
optical absorption coefficients at 921 and 1052 cm - 1 are 
0.040 and 0.051 cm - 1 Torr - 1 , respectively, so that the slow­
er reaction in fact occurs for the more strongly absorbing 
band, i.e., where the power absorbed per unit volume is the 
larger. In a purely thermal reaction, therefore, 1052-cm_1 

radiation would actually produce the faster reaction. 
We observe also that the rate ratio falls with increasing 

pressure. At 400 Torr starting pressure, for example, the 
ratio is one-half that for 300 Torr. 

At 300 Torr, the classical kinetic model of hard spheres1 

gives a collision frequency ~10 9 s - 1 . The rate of photon ab­

sorption per molecule is given by the expression al/N, 
where a is the optical absorption coefficient, / is the photon 
flux density (photons per second per unit area), and TV is the 
number of molecules per unit volume. At 300 Torr, al/N is 
~ 1 0 4 S - 1 for our experiments. This is an upper limit, since 
a will be reduced at the intensity of the laser. 

There have been some studies of the thermal2 and flow-
tube pyrolytic3 decomposition of CF2CICF2CI. Decomposi­
tion occurs readily at temperatures over 600 0 C. Thermo­
dynamic and kinetic data do not appear to be available. 
Borchardt3 writes the initial reaction as 

CF2ClCF2Cl -* CF2Cl2 + CF2: (1) 

followed by polymerization and insertion products of the di-
radical. Infrared analysis of the laser induced reaction 
clearly shows the immediate appearance of characteristic 
bands of C2F4 and also the presence of CF2Cl2. Under con­
tinued irradiation a series of further reactions occurs in 
which initial and subsequent products participate. At vari­
ous stages the bands of CClF3, CF2CCl2, and C2F3Cl, 
among others, are observed. An alternate route to the pro­
duction of C2F4 may be: 

CF2ClCF2Cl — CF2ClCF2- + Cl- (2) 

CF2ClCF2- — C2F4 + Cl- (3) 

CF2ClCF2Cl + Cl- — CF2ClCF2- + Cl2 (4) 

Cl- + Cl- — Cl2 (5) 

The initial reaction induced by laser irradiation of either 
of the bands mentioned appears to be similar to that of py-
rolysis. Presumably the decomposition of CF2ClCF2Cl pro­
ceeds via the breaking of the weakest bond, either the C-C 
bond as suggested by Borchardt3 or the C-Cl bond. If the 
route to reaction involves energy transfer from either of the 
laser-excited modes to a third (predominantly C-C or C-Cl 
stretch) mode by way of intramolecular coupling or reso­
nant collision, then the difference in reaction rates could be 
attributed to differences in the probabilities, or rates, of 
transfer. Alternatively, in each of the laser-excited vibra­
tional modes there might be a significant fraction of the 
total energy in C-C or C-Cl stretching motion, but in dif­
ferent amounts for the two modes. A normal mode analysis 
of the molecule would be of great value for evaluating vari­
ous explanations of the reaction rate differences but a liter­
ature search has revealed only the assignment of a C-F 
stretch of the gauche isomer for each of the two bands ex­
cited here.4,5 
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